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If granular materials comprising particles of identical material but different sizes are 
sheared in the presence of a gravitational field, the particles are segregated according 
to size. The small particles fall to the bottom and the larger ones drift to the top of 
the sheared layer. In an attempt to isolate and study some of the essential 
segregation mechanisms, the paper considers a simplified problem involving the 
steady two-dimensional flow of a binary mixture of small and large spherical 
particles flowing down a roughened inclined chute. The flow is assumed to take place 
in layers that are in motion relative to one another as a result of the mean shear. For 
relatively slow flows, it is proposed that there are two main mechanisms responsible 
for the transfer of particles between layers. The first mechanism, termed the ‘random 
fluctuating sieve ’, is a gravity-induced, size-dependent, void-filling mechanism. The 
probability of capture of a particle in one layer by a randomly generated void space 
in the underlying layer is calculated as a function of the relative motion of the two 
layers. The second, termed the ‘squeeze expulsion ’ mechanism, is due to imbalances in 
contact forces on an individual particle which squeeze it out of its own layer into an 
adjacent one. It is assumed that this mechanism is not size preferential and that 
there is no inherent preferential direction for the layer transfer. This second physical 
mechanism in particular was proposed on the basis of observations of video recordings 
that were played back at slow speed. Since the magnitude of its contribution is 
determined by the satisfaction of overall mass conservation, the exact physical 
nature of the mechanism is of less importance. By combining these two proposed 
mechanisms the net percolation velocity of each species is obtained. The mass 
conservation equation for fines is solved by the method of characteristics to obtain 
the development of concentration profiles with downstream distance. Although the 
theory involves a number of empirical constants, their magnitude can be estimated 
with a fair degree of accuracy. A solution for the limiting case of dilute concentration 
of fine particles and a more general solution for arbitrary concentrations are 
presented. The analyses are compared with experiments which measured the 
development of concentration profiles during the flow of a binary mixture of coarse 
and fine particles down a roughened inclined chute. Reasonable agreement is found 
between the measured and predicted concentration profiles and the distance required 
for the complete separation of fine from coarse particles. 

1. Introduction 
When a randomly mixed mass of granular material consisting of particles of 

different sizes and densities is sheared in the presence of a gravitational field, 
segregation or grading of the particles over the flow depth usually occurs. The coarse 
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low-density particles drift towards the top of the sheared layer; these are followed 
somewhat lower down by the fine low-density and coarse high-density particles, with 
the fine dense particles collecting on the bottom. This phenomenon is evident to 
anyone who, having purchased a box of popcorn at the cinema, notices how the small 
unpopped corn kernels end up a t  the bottom of the container. Devices such as 
pinched sluices, Humphreys spirals and Reichert cones are widely used in mineral 
processing (Wills 1979) for sorting materials of different sizes, materials of different 
densities, concentrates from tailings, etc. Such devices take advantage of the 
mechanism of gravity separation when granular materials in the form of slurries or 
in the dry state are made to flow down inclined surfaces. There seems to be little 
detailed understanding of, or consensus about, the mechanics of how these devices 
operate despite the fact that pinched sluices have been used for centuries and despite 
the fact that they, their more modern counterpart the Reichert cone, and spiral 
concentrators such as the Humphreys spiral are installed in large numbers of plants 
throughout the world. On the other hand, there are instances arising during the 
manufacture of pharmaceuticals, detergents, animal feeds, fertilizers, plastics, 
ceramics, etc. where the goal is to uniformly mix two or more particulate solids. 
Gravity separation can be a source of frustration in systems involving cohesionless 
particles of different sizes (Bridgwater 1976). If the mixing device is operated for too 
long a time, mixture quality deteriorates and demixing occurs after an initial period 
of favourable mixing. 

A phenomenon related to the above gravity separation mechanism is observed in 
connection with deposition of sediments in a geological context; it  is known as 
‘reverse’ or ‘inverse’ grading (Middleton 1970; Middleton & Hampton 1976; Naylor 
1980; Sallenger 1979; Walker 1973). This is in contrast to ‘normal grading’ in which 
the finer particles are found in the upper layers of a lake or river bed and the coarse 
ones are lower down. In  normal grading when a mass of particles is discharged into 
the water, the faster-falling large particles reach the bed first and the slowest-falling 
fine particles are deposited last and form the top of the bed. Reverse grading in which 
the sizes occur in reverse order is believed to result from grain flows (Bagnold 1954) 
analogous to sand avalanching in which dispersions of cohesionless sediments move 
down inclines under the action of gravity. 

Investigations into the mechanics of percolation and segregation of dry granular 
materials are of fairly recent origin, Our present understanding owes much to the 
numerous fundamental theoretical and experimental studies of Bridgwater and his 
co-workers (Bridgwater 1971 ; Campbell & Bridgwater 1973 ; Masliyah & Bridgwater 
1974; Scott & Bridgwater 1975; Bridgwater 1976; Bridgwater, Cooke & Scott 1978; 
Cooke, Bridgwater & Scott 1978; Cooke & Bridgwater 1979; Drahun & Bridgwater 
1981,1983; Foo & Bridgwater 1983; Bridgwater, Cook & Drahun 1985a; Bridgwater, 
Foo & Stephens 1985b, etc.). 

Drahun & Bridgwater (1983) have studied free-surface segregation which occurs 
when particles are poured on to a heap. The effects of particle size, density and shape, 
free-fall height on to the heap, the manner of feeding of particles, etc. were studied. 
While this work is related in some ways to the present study, the flow that develops 
is a very complicated one. Several different segregation mechanisms are at work. The 
flow can be unsteady with periodic avalanching of particles as material builds up 
beneath the pouring point. 

Bridgwater et al. (1985b) used a continuum approach to investigate the 
development over time of particle mixing and segregation in a failure zone of an 
annular shear cell. It was assumed that the diffusive flux was linearly dependent 
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upon concentration gradient with the diffusive coefficient being dependent upon 
both strain rate and mixture coefficient. The evolution of the concentration profiles 
in the failure zone was obtained by the method of characteristics. 

Walton (1983) has performed computer simulations of two-dimensional flows of 
circular and polygonal shaped disk-like particles flowing down inclined chutes. 
Segregation of different sized particles was observed in these simulations but the rates 
were lower than those observed in the experiments to be described in the present 
paper. One would expect that segregation rates in these simulations would be less 
than those in a real physical situation because of geometric restrictions. For flow 
down a given slope the occurrence of void spaces of sufficient size to permit transfer 
of particles from one layer to another is less likely in two than in three dimensions. 

The present paper describes an investigation of the mechanics of the size 
.segregation process during the relatively slow flow of dry particles of equal mass 
density down a roughened inclined chute, We consider the case in which a binary 
mixture of small and large spherical particles enters the upstream end of the chute. 
It is assumed that the chute is inclined such that the particles flow a t  constant depth 
with constant streamwise velocity profiles. The concentration of small particles is 
taken to be uniform over the depth a t  the entry and we investigate the size 
segregation process as the flow proceeds downstream. By making use of information- 
entropy concepts and extending the approach of Cooke & Bridgwater (1979), the net 
percolation velocities of the small and large particles are obtained. The mass 
conservation equation for the small particles is solved by the method of 
characteristics for the limiting case of dilute concentrations to obtain the 
development of the concentration profiles with downstream distance. A similar but 
more general analysis for arbitrary concentrations is also presented. Experiments 
were performed using a binary mixture of spherical polystyrene beads flowing down 
a roughened inclined chute. Concentration profiles measured at various distances 
downstream of the flow entry are compared with predictions of both the dilute and 
general theories. 

2. Proposed physical mechanisms 
We shall attempt to isolate and study some of the essential segregation mechanisms 

by considering a simplified problem involving the steady two-dimensional flow of a 
binary mixture of small and large spherical particles of equal mass density down a 
roughened inclined chute. We assume that the flow takes place in layers which are 
in motion relative to one another as a result of the mean shear developed by the 
rough lower boundary (figure 1). 

For flows that are not too fast and in which the particle velocity fluctuations 
arising from collisions are not too vigorous, it is proposed that there are two main 
mechanisms responsible for the transfer of particles between layers. Our proposal is 
based upon visual observations of video tapes made during the experiments 
described in $ 7 .  The tapes were played back a t  slow speed and the motion of 
individual grains in the region of the transparent glass sidewalls could be observed. 
Because of overriding of layers and the continual rearrangement of particles within 
a layer, the contact force network and the void spaces are undergoing continual 
random changes. At any instant, there will be a distribution of void spaces in a given 
layer. If a void space is large enough, then a particle from the layer above can fall 
into it as the layers move relative to one another. For a given overall solids 
concentration, the probability of finding a hole that a small particle can fall into is 
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‘Continuum’ 

FIGURE 1. Flow of particles in layers down a rough inclined chute. 

larger than the probability of finding a hole that a large particle can fall into. Hence, 
there is a tendency for particles to segregate out, with fines a t  the bottom and coarse 
ones a t  the top. This gravity-induced size-dependent void filling mechanism we term 
the ‘random fluctuating sieve ’ mechanism. Our second proposed mechanism is less 
apparent but was suggested by the slow-motion videotapes of the segregation 
process. If the instantaneous forces acting on an individual particle are sufficiently 
imbalanced, the particle can be squeezed out of its own layer into an adjacent one. 
We assume that this mechanism, which we term ‘squeeze expulsion’, is not size 
preferential and that there is no inherent preferential direction for the layer transfer. 
It is important to note that the correctness of details of the physical explanation of 
this second mechanism is not essential. One just requires some additional means to 
satisfy the condition that there is no overall mass flux in the direction normal to the 
plane of the inclined chute. 

We have proposed only two main mechanisms for the transfer or migration of 
particles across the shear layer. Although we believe these are the two most 
important ones for the slow, dense shearing flows of present interest, it should be 
noted that in more general flows several other mechanism exist, as has been discussed 
by Williams (1976), Johanson (1978) and Drahun & Bridgwater (1983). The ideas 
discussed above will now be developed in a more quantitative form. 

3. Random fluctuating sieve model 
3.1. Distribution of voids in a layer 

During the shearing process in the proposed model it is necessary to decide whether 
a particle from the upper layer can fall into a hole in the underlying layer. To do so 
requires information about the likely distribution of the sizes of the void spaces in 
some region of the underlying layer. A simple and convenient way to determine this 
distribution function is by means of the ‘maximum-entropy approach ’ (Jaynes 
1963; Brown 1978) as follows. 
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b, D, 

sphere, D,  

FIGURE 2 .  ‘Random continuous network ’ for binary mixture of small and large spherical 
particles in a layer. 

Consider a binary mixture of spherical particles of equal mass density in a ‘region ’ 
or ‘neighbourhood’ in one layer. The large and small particles are of diameters D,  
and Db respectively. We assume that the particles a t  any instant make up a ‘random 
continuous’ network (see Zallen 1983, pp. 60-71) as shown in figure 2.  Define a ‘void 
sphere’ of diameter D, as the largest sphere that can fit into a given void space 
formed by the random continuous network. We discretize such that each void sphere 
is associated with one ofm states corresponding to a particular void sphere diameter 
Dvf. Now define a void diameter ratio 

(3.2) 
where B =  n a D a + n b  Db 

n a + n b  

is the mean particle diameter in a neighbourhood, and n, and nb are the number of 
large and small particles in that neighbourhood. Thus 

(3.3) 

where 7 = n b / n a ,  (3.4) 

U = Db/Da. (3.5) 
Let Mi equal the number of void spheres to which the ith state (corresponding to a 
particular void diameter ratio E,) is assigned, then 

m 
X M M i = M  
i=l 

is the total number of voids in the neighbourhood. Any distribution M i  corresponds 
to a specific microstate. The number of ways to realize a specific microstate, or in 
other words the number of ways to distribute M void spaces over m states is 

M !  
M,!M, !  ... illrn!. 

W =  (3.7) 

11 FLM 189 
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Making use of Stirling’s approximation we find 
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where log W corresponds to the information entropy (Jaynes 1963; Brown 1978). 
The probability of finding a voids sphere corresponding to the i th state is given 

and 

Also, we have 

Mi p .  = - 
a M  

M .  m 

C p i = Z c = l .  
i-1 i-1 M 

- D, 
i=l D ’  

m 
C piE,  = E = 

where E is the mean void diameter ratio defined 

(3.9) 

(3.10) 

(3.11) 

as the ratio of the mean void 
diameter D, to D, the mean particle diameter of the neighbourhood. 

If all states are equally probable, then the most probable way of assignment is the 
one that maximizes (3.8) subject to the constraints (3.10) and (3.11). We thus find the 
probability of finding a voids diameter ratio E = D, /D as 

p ( E )  = - 1 exp { - ‘A] 
E-Em E-Em ’ (3.12) 

where Em is the minimum possible voids diameter ratio. For the closest packing of 
equal spheres Em = 0.1547. 

Now define a voids area ratio in a neighbourhood as the ratio of the total projected 
area of the voids to the projected area of the solids, i.e. 

(3.13) 

where M is the total number of voids in the neighbourhood, AVT is the mean projected 
total voids area, A ,  = $cDZ and A ,  = inDE are the projected areas of the large and 
small spheres respectively. Define k,, as the ratio of the mean voids sphere projected 
area to the mean projected total voids area AVT, 

(3.14) 

where the mean voids sphere projected area 
- 

A VS =$D$ (3.15) 

The total number of particles in the region 

N = n,+n,. (3.16) 

Since 
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Approaching particles 
in Layer A 
___) 

FIGURE 3. Capture of particles by void in lower layer B. 

we can rewrite (3.13) using (3.14), (3.15) and (3.16) as 

M Ez ( l + ~ r r ) ~  
eA=-- -  

N k," (1 +11) (1 +v2) ' 
(3.17) 

where M/N is the ratio of the number of voids to the number of particles in a layer 
neighbourhood. For example, for a cubic packing of equal particles M / N  = 1 ; for 
closest packing of equal particles, M/N = 2 ; for a regular hexagonal array around a 
void of equal diameter, M/N = 0.5; etc. For a random continuous network, we 
assume that we can choose values for M/N and k,, appropriate for the mean voids 
diameter ratio associated with the neighbourhood. 

3.2. 'Capture ' of a particle 
We now consider how a particle from layer A (see figure 1) is captured by a void space 
in the underlying layer B. Figure 3 shows a void with void diameter D, and two 
adjacent (cross-hatched) spheres all in the layer B. A particle from the upper layer 
A will be directed towards the void if its centre lies within the capture region defined 
by the capture diameter D, equal to the sum of the void diameter D, and the radii 
of the two adjacent cross-hatched spheres in layer B. We take D, to be given 
approximately by 

L),  NN D,+D = D(E+ 1 ) .  

We define the number of particles per unit area in a layer as 

- - ( l + r )  
Aa(1 +eA) ( 1  +v2) 

n, = n,(M/N) 

The number of voids per unit area in a region is defined as 

(3.18) 

(3.19) 

(3.20) 

The number of particles 'captured ' by a void per unit time is u, D, np, where u, is the 
mean downstream velocity of the particles in a layer relative to those in the 
underlying layer. The number of small, b, particles captured by a void per unit time 
is 

11-2 
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The number of b particles captured per unit area per unit time by voids having 
diameters between D, and D, + dD, is 

The b particles drop from layer A into the void in the underlying layer B if the void 
space is large enough, i.e. if E > D,/D = E,.  Hence, the number of small, b, particles 
per unit area per unit time that fall into the voids (i.e. towards the bed) is 

u , D ( E + l ) n p p  dE, 

and using (10) 

(3 .21)  

(3.22) 

Similarly the number of large, a,  particles per unit area per unit time that fall into 
voids is 

np u, D[Ea +I? -Em + 11 exp Nu = n,- (3 .23)  n u  

n a  + n, 

where E ,  = Da/D. 

3.3.  Continuum quantities 

We now define continuum or averaged percolation velocities and densities for the 
small and large sphere components. Thus, we write the mass flux of the small, b, 
particles in the direction normal to the incline as 

Pbqb = - m b  N b ,  (3 .24)  

where m, is the mass of an individual b particle, q, is the ‘continuum’ or volume- 
averaged velocity of the b particles in the positive y-direction (see figure 1 )  and pb is 
the mass of components b per unit volume, which can be expressed as 

(3.25) 

where e is the volume voids ratio (i.e. the volume of voids/volume solids) and p s  is the 
solid material mass density. Similarly for the large, a ,  component we find 

where the mass of component a per unit volume is 

The bulk density of the mixture is given by 

(3 .27)  

(3 .28)  

where v is the solids volume fraction (i.e. the volume of solids per unit volume). 
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The relative velocity between layers, u,, may be written as 

du 
u, = -sy, 

dY 
(3.29) 

where u is the continuum or bulk velocity in the x-direction (figure 1) and Sy is the 
particle-layer thickness which we approximate as 

sy = k, ,D,  (3.30) 

and ICLT is a layer-thickness constant and is close to unity. Now 

(3.31) 

where V, = &D: and V, = 87cD; are the volumes of the large and small spheres 
respectively. Using (3.2) and (3.19) we may express (3.31) as 

(3.32) 

4. Squeeze expulsion and net percolation velocities 
Both of the percolation velocities q, and q b  that we have just calculated turn out 

to be negative, i.e. towards the rigid impermeable bed. Thus, there must be another 
mechanism for transfer of particles from one layer to another which gives rise to a 
counterflow so as to yield a zero net mass flux in the y-direction. (Note that we have 
assumed the flow depth, velocity profiles and overall solids fraction to be independent 
of streamwise distance.) It is proposed that, as a result of the fluctuating contact 
forces on an individual particle, there can occur force imbalances such that a particle 
is ‘squeezed’ out of its own layer into an adjacent one if an opening is available or 
the force imbalance is sufficiently large. This mechanism is not gravity driven and it 
is supposed that it is not size preferential. Thus, setting the mass flux in the y- 
direction to zero, we obtain 

Pa q a  + P b  q b  + p q S E  = 0, (4.1) 

where p is the bulk density given by (3.28) and qSE is the continuum or bulk squeeze- 
expulsion velocity for the mixture. We can rewrite (4.1) as 

Pa qa,,, = - P b  qbNET7 (4.2) 

where qaNET = q a + q S E ,  qb, , ,  = q b + q S E  (4.3) 

are the net volume-averaged percolation velocities of the a and b components 
respectively . 

The velocity qSE has been named the squeeze-expulsion velocity because this 
mechanism seems to us from our visual observations of video-tapes of the segregation 
process to be the main one responsible for the counterflow. However, qSE is necessary 
to satisfy overall mass conservation (4.1) and it could be due to a number of different 
mechanisms. 
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The net mass fluxes in the y-direction may be written using (3.24), (3.26), (4.1) and 

(4.4a) 

(4.3) as 
- P a P b  P b  P a  

P P P 
Paqa , , ,  - - ( q a - q b )  = - - m a N a + - m b N b ,  

( 4 .4b )  

Note that the particles are also translated in the x-direction with the mean transport 
velocity u ( y ) .  Thus, the volume-averaged velocity vectors for the a and b components 
are 

(4.5) va = u(y )  i+ qa, , , j ,  Ob = u(y) i+ q b N E T j ’  

and the bulk velocity of the mixture is 

P a  P b  u = - u a + - u b .  
P P 

(4.6) 

4.1. Net percolation velocity for dilute case, 7 + 0 

We define the volume concentration of small, b, particles in a neighbourhood as the 
ratio of the local volume of the b particles to the total volume of particles in the 
mixture in that neighbourhood. Thus 

(4.7) 

Consider the case of a dilute concentration of small particles in which the number 
density ratio 7 --f 0. 

Now using (3.2), (3.17), (3.19), (3.22), (3.23), (3.25) and (3.27) in (4.4) and retaining 
the leading terms for 7+0  we obtain the following expression for the non- 
dimensional net percolation velocity for the b particles : 

- - - qbNET - 4 M  kET [(%+R--B,) exp[ --I l-Em 
qbNET - Da (duldy) 7c N [ 1 +  (E2/kA,)  ( M / N ) ]  E-Em 

-(a+E-E,+l) exp 

Cooke & Bridgwater (1979) and Bridgwater et al. (1978) have reported percolation 
velocities measured during experiments in which a single small particle (or in some 
cases a small number of particles) fell through a sheared bed of larger particles. The 
larger particles were contained in a shear box having two vertical sidewalls and two 
sidewalls that could rotate about hinges a t  the base, deforming the rectangular box 
into a parallelogram in reciprocating fashion. In  earlier versions of the shear box the 
strain rate varied sinusoidally with time, but in later versions the strain rate was 
constant during the time between reversals. The results of these later tests are 
suitable for comparison with the predictions of (4.8). 

In  order to determine values of the net percolation velocity qbNET from (4.8) we 
need value for M I N ,  E ,  kAv and kLT. We can easily calculate M I N ,  E ,  and k,, for 
various packings of equal-sized particles around a void. Some values are listed in 
table 1. 

A rough and simple way to obtain a consistent set of values M I N ,  E ,  and kAV is 
to plot the values in table 1 versus the number of particles around a void in a layer, 
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Number of particles 
around void in a layer M I N  E k A V  

3 (closest packing) 2 0.1547 0.466 
4 (simple cubic) 1 0.414 0.63 
5 0.6 0.701 0.712 
6 0.5 1 0.765 

TABLE 1 

h + 5 1  
m 
s" 
v .. 

z 
8 
I1 

,2 0.1 
c 

0.01 
0 0.2 0.4 0.6 0.8 1 .o 

&ID, 

FIGURE 4. Comparison of predicted net percolation velocity versus particle diameter ratio with 
experimental results of Bridgwater et al. (1978) and Cooke & Bridgwater (1979) (*). Lines represent 
equation (4.8) from present dilute theory using: --, M I N  = 1.0, I? = 0.414, k,, = 0.63 and 
v = 0.524; -, M / N  = 1.2, E = 0.33, kA, = 0.59 and v = 0.546; ---, M I N  = 1.48, E = 0.25, 
k,, = 0.55 and Y = 0.571. 

make a reasonable estimate of the number of particles around a void for the case of 
interest and interpolate for the corresponding values of M I N ,  E and kAv. Making use 
of these values in (3.17) and (3.32), taking k,, = 1.0 and letting 7 + 0  gives the 
corresponding values for v. 

Figure 4 shows the predicted values of the non-dimensional net percolation 
velocity qbN,,/(Dadu/dy) versus the ratio of particle diameters cr compared with the 
experimental measurements of Bridgwater et al. (1978). Calculations are shown for 
values of v equal to 0.524, 0.546 and 0.571. A value of v = 0.546 seems to be 
reasonable for a mass of spherical particles undergoing cyclical shear as in the 
experimental apparatus. For this value of v and for diameter ratios cr 2 0.5, the 
predicted percolation velocities are close to the experimental values but the 
predictions are too low for cr < 0.5, the discrepancy increasing with decreasing cr. 
Note that for cr < 0.1547 spontaneous percolation would occur, i.e. small particles 
could percolate through the matrix of larger particles simply as a result of gravity, 
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even in the absence of any shear. The present theory is based upon the presence of 
shearing motion and does not account for spontaneous percolation effects. As a 
result, it  would be expected to underpredict the percolation velocity for small 6. 

5. Method-of-characteristics solution for dilute case, 7 --f 0 
For a steady flow, the overall mass conservative equation is 

v .  (pu)  = 0, (5.1) 

v'  (pa V,) = 0, v.(pb n b )  = 0. (5 .2)  

and for each of the components 

Substituting (4.5) into (5.2) yields for the fully developed flow (u = u ( y ) )  that is 
under consideration here 

and 

(5.3) 

(5.4) 

If the velocity field u ( y )  is known, and the distribution of concentration Gb or 
number-density ratio 7 over the depth is specified a t  some upstream station, say 
x = 0, then the mass conservation equation (5.2) can be solved by the method of 
characteristics to determine the size segregation process as the flow proceeds 
downstream from x = 0. First, we shall consider the dilute case in which 7+0. The 
analysis is greatly simplified in this limit and the qualitative results are the same as 
in the more general case to be discussed in the next section. 

From experiments on fully developed flow of particulate solids down rough 
inclined chutes, i t  has been found (see review paper of Savage 1984) that the velocity 
increases in a roughly linearly manner with distance from the rough bed. Thus, for 
the present simple analysis we approximate 

U(Y) = Y Y ,  (5 .5 )  

where y is the constant shear rate. 
Making the assumption that the solids volume fraction v is constant, substituting 

(3.25), (4.8) and (5.5) in (5.4) and considering the dilute case where the layer number- 
density ratio r + O  we obtain 

(5 .6)  

The solution of (5.6) is straightforward; from the method of characteristics we 
find 

(5.7) 

Thus 7 is constant on the surfaces 

where yo is a constant corresponding to the y-value of the characteristic line at the 
initial station x = 0. Given the distribution of 7 with depth a t  x = 0, it is possible to 
determine the solution for 7 in the downstream region. Note that had we assumed a 



Particle size segregation in inclined chute $ow 

I?= - q b N B T  
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&/jump 

“2 = 0, P b z  (100% Fines) 
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FIGURE 5.  Conditions across concentration jump near bed 

0% Fines fall line 
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I 

xs 100 YO Fines 
accumulation line 

Distance for 
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FIGURE 6. Development of concentration profiles with downstream distance. 

more general velocity distribution, say a power law instead of the linear velocity 
profile of (5.5), the solution for 7 could be obtained in a similar but still 
straightforward way. It would be of interest in a future investigation to examine the 
effects of the velocity profile on the segregation process. 

The fine particles have a net percolation velocity that is towards the bed. 
However, since the bed is impermeable, fines must accumulate there. The amount 
that accumulates near the bed increases with downstream distance. Thus, a ‘ 100 % 
fines accumulation surface’ develops near the bed. This jump in concentration is 
analogous to a shock wave in compressible fluid flow. The characteristics solution 
given by (5.7) and (5.8) is valid in the region above the concentration jump. 

We can determine the concentration jump velocity 5 by applying conservation of 
mass for the b particles across the jump (see figure 5). Thus, assuming the jump to 
be approximately parallel to the bed, we obtain 

P b , ( - q b N E T +  q) = Pb,  63 (5.9) 

where pb,  and pb ,  are the mass densities of b particles in regions 1 and 2 either side 
of the concentration jump. For small 7,  (5.9) can be written after using (3.25) and 
(4.8) as 

(5.10) 

We can also determine the development of the concentration shock surface by 
proceeding in a somewhat different way. Consider a flow of uniform depth h in which 
the initial concentration a t  x = 0 is uniform over the depth such that 

~ ( 0 ,  y) = T,, = const. (5.11) 

du 5 = qbNET D,-7a3. 
dY 
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The 0% fines fall line y = 6,(x) (see figure 6) is given by (5.8) as 

S. B. Savage and C. K .  K .  Lun 

6, = [h2 - 20, QbNET XI;. (5.12) 

We seek the 100 YO fines accumulation line, y = &,oo(x). Applying the depth-averaged 
conservation-of-mass equation for the fine b particles yields 

= const. (5.13) 

Assuming that the solids volume fraction Y is constant, substituting (3.25) and (5.7) 
in (5.13) yields, after some manipulation, the expression for the depth of the 

(5.14) 
concentration jump 

We can solve for the distance x, required for complete separation of small particles 

6100 = (20a gbNET 70 (T3 %)" 

from large ones, i.e. when So = S,,, (see figure 6). Equating (5.12) and (5.14) gives 

(5.15) 

6. General solution 
The above method-of-characteristics approach can also be applied to treat the 

more general cases when 7 = nb/na is not necessarily small but takes arbitrary 
values. Using (3.2), (3.17), (3.19), (3.20), (3.22), (3.23), (3.25), (3.27), (3.29), (3.30) in 
(3.24) and (3.26) we obtain the non-dimensional volume-averaged velocity of the 
small, 6 ,  and large, a ,  particles in the positive y-direction respectively : 

From (3.25), (3.27), (3.28) and (4.4) we obtain the expressions for the non- 
dimensional net percolation velocities for the b particles as 

and for a particles as 
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The mass conservation equation (5.4) for b particles can be rewritten as 

Assuming a linear velocity profile and substituting (5.5) into (6.5), we obtain the 
following equation, which is analogous to (5.6) : 

whcrc 

and K ,  can be obtained by simply differentiating (3.25) and (4.4b) with respect to 7 
and substituting into (6.7). The algebra is very lengthy and the full expression for 
K ,  is presented in Appendix A. From the method of characteristics, we find the 
solution of (6.6) to be 

This is similar in form to (5.7) which was obtained assuming a dilute concentration 
of fines, r,~ = nb/na+O. 

We follow the same procedure to determine the complete separation of small 
particles from large ones as described in the previous section. The family of 
characteristic lines is given by 

y = [yi - 2 0 ,  K ,  XI;, (6.9) 

where yo is a constant corresponding to  the y-value of the characteristic line at the 
initial station x = 0. Consider a flow of uniform depth h in which the initial 
concentration at x = 0 is uniform over the depth such that 

~ ( 0 ,  y) = 7, = const. (6.10) 

The 0 %  fines fall line y = 6,(x) given by (6.9) becomes 

6, = [h2 - 2 0 ,  K ,  XI;. (6.11) 

The 100% fines accumulation line, y = 6100(x), is obtained by using (5.13) for the 
depth-averaged conservation of mass, which yields 

s,,, = [20, Kb To fT3 XI; (6.12) 

The distance for complete separation of small particles from large ones is found by 
equating (6.11) and (6.12), which gives 

h2 

2 0 ,  K b (  1 + q0 8) ' 

x, = (6.13) 

Substituting (6.13) into (6.11) we obtain the final depth of the fines layer after 
complete separation has occurred : 

(6.14) 
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FIQURE 7 .  Schematic diagram of inclined-chute segregation apparatus. 
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7. Experimental measurements 
Experiments were performed using the apparatus shown in figure 7. A Plexiglas 

hopper contained randomly mixed spherical polystyrene beads having a specific 
gravity of 1.095. The binary mixture was made up of large beads ranging from 1.40 
to 1.68 mm in diameter and small 0.85 to 1.0 mm beads, having mean particle 
diameters of 1.6 and 0.943 mm respectively, giving a diameter ratio of 0.589. The size 
distributions for the small and large particles are shown in figure 8. These were 
determined by measuring the diameters of samples of several hundred particles with 
a micrometer. The mean angle of repose for the 'monosized' beads is 25". No 
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FIQURE 9. Concentration profiles for small particles (dilute theory) ; 10 YO initial concentration, 
chute inclination of 26" : (a) initial depth of entry, h, = 15 mm ; ( b )  10 mm. Concentration profiles 
averaged over gap between splitter plates : -, measured concentration profile ; ----, predicted 
concentration profile; -.-, 0% fines fall line and 100% fines accumulation line and unadjusted 
concentration profile. 

significant difference of mean angle of repose was found between the 'monosized' 
beads and the mixtures of 10% and 15% volume concentration of fines. 

The hopper could be attached a t  any position along the inclined chute. The chute 
was 1 m in total length and the width of the channel cross-section was 75 mm ; it had 
smooth glass sidewalls and a rough bottom. The particles flowed down the inclined 
chute and struck a series of splitter plates which were fixed to the downstream end of 
the chute and arranged to separate the flow into a maximum of five distinct layers. 
The layers of particles were then directed towards and collected in separate bins. By 
measuring the concentration of fines in each bin, the concentration profiles can be 
obtained a t  a given distance downstream from the hopper exit. By fixing the hopper 
a t  various positions along the chute, the development of the segregation process with 
distance along the chute can be determined. The chute can be tilted to provide 
different angles of inclination. 

The flow depth of the mixture was observed to vary slightly along the streamwise 
direction ; the amount of variation depended upon the flow rate and bed inclination 
angle. Thus, a t  the location where the flow struck the splitter plates, the flow depth 
was slightly different from the initial depth and not exactly equal to it, as assumed 
in the theory. Figures 9-13 show concentration profiles a t  different streamwise 
positions. The results are presented in terms of a non-dimensional coordinate formed 
by the ratio of the normal distance from the bed to the local depth of flow. 

The values ofE, M I N  and k,, used in all the calculations were 0.701,0.6 and 0.712 
respectively. These values correspond to the case of five equal-sized particles around 
a void in a layer (see table 1 )  and they are felt to be reasonable values for the present 
inclined-chute experiments. Using (3.32) the values of bulk solids fraction v are found 
to be 0.518 and 0.531 for the cases of 10 YO and 15 YO fines respectively. These values 
of v are slightly lower than the value of v = 0.546 that gives a reasonably good fit to 
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FIGURE 10. Concentration profiles for small particles (general theory) ; 10 % initial concentration, 
chute inclination of 26": (a) initial depth of entry, h, = 15 mm; (b )  10 mm. Curves designated as in 
figure 9. 

the experimental data of Cooke & Bridgwater (1979) shown in figure 4 for IT = 0.589. 
It seems plausible that for continued shearing v would be slightly smaller than for the 
reciprocal shearing of figure 4. 

Figure 9 presents some typical experimental results for the case of a 10% initial 
concentration C,, a t  entry (x = 0) and an angle of inclination of 26". As the flow 
proceeds downstream, the fines percolate towards the bottom. A layer consisting of 
100% fines develops a t  the bed, its depth increases with downstream distance as 
indicated by the measured mass-concentration profile. (Note that the volume 
concentration of the small, b ,  particles C, given by (4.7) is the same as the mass 
concentration of small particles since the mass densities of the large and small 
particles are the same). By about 0.55m from the entry, the fines have been 
separated from the coarse particles. This is not immediately obvious from figure 9, 
since the measured concentration of fines in the lowermost layer is only about 83 %. 
The depth of the 100% fines layer was less than the height of the lowest splitter 
plate, hence both coarse and fines were collected to give an average measured 
Concentration over the lowest gap of 83% at the separation distance x,. It should 
also be noted that the splitter plates locally obstructed the flow, changing the 
velocity profiles and increasing the depth just in front of the splitter plate. Thus the 
measured concentration profiles shown in figure 9 are probably slightly different 
from what would exist in unobstructed flow. However, the distance required for 
complete separation of the fines should be very close to that obtained in the absence 
of the splitter plates. Figure 9 also shows the theoretical 0 % fines fall line, the 100 % 
fines accumulation line near the bed and the station for complete separation of fines 
based upon the asymptotic solution for dilute concentrations of fines using (5.12) and 
(5.14). The concentration profiles predicted by the present theory were obtained by 
averaging over depths corresponding to  the gaps between individual splitter plates 
(for details see Appendix B). This was done to facilitate more direct comparison with 
the experimentally measured profiles. 
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FIGURE 11 .  Concentration profiles for small particles (general theory) ; 10 % initial concentration, 
chute inclination of 28" : (a )  initial depth of entry, h, = 15 mm ; ( b )  10 mm. Curves designated as in 
figure 9. 

The same set of experimental results is compared in figure 10 with the theoretical 
predictions based upon the general method-of-characteristics solution using (6.11) 
and (6.12). Comparing figures 9 and 10, the general theory is found to predict a length 
for complete separation of fines from coarse particles longer than that predicted by 
the asymptotic dilute theory. 

Figure 11 presents similar comparisons of the present general theory with the 
experimental results for the case of 10% initial concentration of fines and 28" of 
inclination. Comparing figures 11 and 10, it is interesting to observe that the 
complete separation distance indicated by the measured concentration profiles 
increases with the angle of inclination. At higher angles of inclination the bulk 
material flows at  a higher rate and the bulk solids fraction decreases (or 
correspondingly, the voids fraction increases). Hence, one would expect that  the rate 
a t  which fines percolate down towards the bed will be larger since there are more 
voids that can accept the small particles. As a result, one might expect the complete 
separation distance to be shorter. However, the opposite trend is observed in the 
experimental results. The same is true for the experimental results for the case of 
15% initial concentration of fines as presented in figures 12 and 13 for angles of 
inclination of 25" and 28" respectively. 

The present general theory (which can handle arbitrary concentrations) offers a 
plausible explanation for the above behaviour. For example, consider the case of 
10 % initial concentration of fines. The non-dimensional volume-averaged velocities 
and the non-dimensional net percolation velocities for the small, b, and large, a, 
particles, which are given by (6.1)-(6.4), are plotted versus the bulk solids fraction 
in figure 14. To obtain values of the bulk solids fraction from (3.32), values of E ,  
M / N  and k,, from table 1 together with interpolated values were used in the general 
theory. As shown in figure 14, the non-dimensional net percolation velocities of both 
the small particles, gbNET, and large particles, gas,,,, increase to maximum values and 
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FIQURE 12. Concentration profiles for small particles (general theory) ; 15 YO initial concentration, 
chute inclination of 26" : (a) initial depth of entry, h, = 15 mm ; (b) 10 mm. Curves designated as in 
figure 9. 

then decrease as the bulk solids fraction decreases. When the bulk solids fraction is 
less than some critical value, the small particles percolate downward a t  a slower rate. 
The reason is that the voids become so large that a significant number of large 
particles find voids large enough for them to fall into, thus reducing the net 
percolation velocities of both the small and the large particles. This effect can be seen 
in the plots of the non-dimensional volume-averaged velocities of both the small 
particles, Qb,  and large particles, q,, as shown in figure 14. The rate a t  which @, 
increases with decreasing bulk solids fraction is higher than the rate of increase of 
qb. As a result, it  can take a longer distance for the complete separation of fines from 
coarse particles when the bulk solids fraction of the flowing materials decreases below 
some critical value. 

The increase in separation distance with increased slope could also be due in part 
to  effects that have been neglected in the present analysis. As the slope increases the 
velocities increase, the material becomes less dense and the magnitude of the 
individual particle velocity fluctuations increases. Under such conditions diffusive 
mixing of the particles becomes more important and segregation effects are thus 
inhibited. 

Finally we make some comments about the use of the continuum approach for 
comparison with these experiments in which the thickness of the shearing layer is 
only several particle diameters thick. A related issue arises in comparisons of 
experimental shear flows with the kinetic theories of granular flow (see the review of 
Savage 1984). It is natural for one to immediately assume that to make the transition 
from a treatment a t  the level of individual particle interactions to the consideration 
of a continuum requires the shear layer to  be many particle diameters thick. That 
this is not necessarily so can be seen from the analyses of transport properties in a 
granular shear flow (for example, see Lun et al. 1984) which are extensions of the 
kinetic theories of dense gases (Chapman & Cowling 1970). These analyses proceed to 
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FIGURE 13. Concentration profiles for small particles (general theory) ; 15 YO initial concentration, 
chute inclination of 28" : (a) initial depth of entry, h, = 15 mm; ( b )  10 mm. Curves designated as in 
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FIGURE 14. Predicted variation of non-dimensional net percolation velocities, Qa.,,, and &NET, and 
non-dimensional volume-averaged velocities, qa and gb with bulk solids fraction for uniform initial 
concentration of 10 YO fines and DJD, = 0.589. 

determine stresses, energy fluxes, etc. by considering particle transport and collisions 
across an infinitely thin plane surface. The essential issue is to consider a sufficient 
number of particle interactions to make the statistical averages and the definition of 
the distribution functions meaningful. In the present paper we consider steady-state 
transport of particles across surfaces parallel to the bed of the inclined chute. This 
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means that we must consider a region of sufficient streamwise and lateral extent or 
a sufficiently long time for meaningful statistics, but i t  does not imply that the 
lengthscales perpendicular to the bed need to be many particle diameters in size. 

8. Concluding remarks 
The present paper has made use of information-entropy concepts to study the 

process of gravity separation of fine from coarse particles during the shearing flow of 
initially randomly mixed material down an inclined chute. The mechanism proposed 
to explain this process is essentially a kinematic one which involves the shearing of 
particles in relatively distinct layers and the tendency of particles in an upper layer 
to fall into randomly generated holes in the layer underneath. 

The analyses have predicted the streamwise development of the particle 
concentration profiles, the development of the layer of 100 % fine particles near the 
bed and the length for complete separation of fine from coarse particles. On the basis 
of the agreement between the predicted and experimentally observed behaviour it 
appears that the proposed flow mechanisms are reasonable, a t  least for the relatively 
slow flow regime. 

To study the segregation process for the high-shear-rate flow regime one could 
apply kinetic theories for mixtures of granular materials of the kind recently 
developed by Farrell, Lun & Savage (1986). Such an approach would be applicable 
a t  moderate overall solids concentrations, and shear rates sufficiently high that the 
dominant contributions to the total stresses are due to interparticle collisions and that 
the effects of enduring frictional contacts are negligible. In  the present experiments 
the flows occurred a t  relatively high bulk solids concentrations, a t  moderate shear 
rates and particles were observed to  be in nearly constant contact with their 
neighbours. Under these conditions the present kinematic description of the 
segregation process would seem to be more appropriate than that which might be 
developed from the kinetic theory of mixtures of Farrell et al. (1986). 
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Appendix A. Summary of equations used in the general theory 
From (3.25) and (4.4b), equation (6.7) for K ,  can be expressed as follows 

where 

I1 = [A, exp (A,) -A ,  exp ( A 5 ) ] / A l  A: 
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and 

( l + V ) ( l + @ )  E M 
A, = +--, 

(1+r42 k*v N 

Appendix B. Concentration profile averaged over the splitter-plate gap 
Consider the flow of a binary mixture having an initial concentration of fines B,, 

which is constant over the depth at  station x = 0. The 0% fines fall line, So, defines 
the region under which the concentration of fines is Cbo and above which it is zero (see 
figure 6). The 100% accumulation line, 6,,,, defines the region under which there are 
no coarse particles but only fines. 

The method of measuring the concentration profiles used in the present experiment 
was to divide the flow into a number of distinct layers by means of a series of splitter 
plates. These plates were positioned a t  different levels parallel to the bed and had 
their leading edges located close to  the same streamwise station near the downstream 
end of the chute. If the splitter plates are sufficiently close to the upstream entry of 
flow, 6, and 6,,, will intersect the splitter plates before they can intersect each other 
(i.e. the location of the end of the channel is less than the complete separation 
distance xs). In  order to facilitate comparison of the present theories with the 
experimentally determined concentration profiles, the following layer depth- 
averaging procedure was used. First consider the possible case in which So intersects 
an arbitrary ith layer (i = 1, 2, ...) located between yi  and yi+l (i = 1 represents the 
lowest layer and y1 = 0 corresponds to the bed). The depth-averaged concentration 
for each layer can be obtained from the conservation-of-mass equation for the fine, 
b ,  particles which can be expressed as 

We can rewrite (B 1) by using (37), 
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Since the concentration of fines is zero above So, the second term on the right-hand 
side of (B 2) drops out. As a result, using (3.25) and (5.5) in (B 2) we obtain the layer 
depth-averaged concentration for the ith layer : 

Similarly, for a second possible case in which S,,, intersects the ith layer we have 

J Yi 

The concentrations of fines are 100% below S,,, and CbO above S,,,. Hence, we find 
that the concentration averaged over the depth is 

For the third possible case in which both So and S,,, intersect the same ith layer, we 
have 
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